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ABSTRACT

Background: Given high on-treatment mortality in heart failure (HF), identifying molecular pathways 
that underlie adverse cardiac remodeling may offer novel biomarkers and therapeutic avenues. 
Circulating extracellular RNAs (ex-RNAs) regulate important biological processes and are emerging 
as biomarkers of disease, but less is known about their role in the acute setting, particularly in the 
setting of HF.
Methods: We examined the ex-RNA profiles of 296 acute coronary syndrome (ACS) survivors 
enrolled in the Transitions, Risks, and Actions in Coronary Events Center for Outcomes Research and 
Education Cohort. We measured 374 ex-RNAs selected a priori, based on previous findings from a 
large population study. We employed a two-step, mechanism-driven approach to identify ex-RNAs 
associated with echocardiographic phenotypes (left ventricular [LV] ejection fraction, LV mass, 
LV end-diastolic volume, left atrial [LA] dimension, and LA volume index) then tested relations of 
these ex-RNAs with prevalent HF (N=31, 10.5%). We performed further bioinformatics analysis of 
microRNA (miRNAs) predicted targets’ genes ontology categories and molecular pathways.
Results: We identified 44 ex-RNAs associated with at least one echocardiographic phenotype 
associated with HF. Of these 44 exRNAs, miR-29-3p, miR-584-5p, and miR-1247-5p were also 
associated with prevalent HF. The three microRNAs were implicated in the regulation p53 and 
transforming growth factor-β signaling pathways and predicted to be involved in cardiac fibrosis 
and cell death; miRNA predicted targets were enriched in gene ontology categories including several 
involving the extracellular matrix and cellular differentiation.
Conclusions: Among ACS survivors, we observed that miR-29-3p, miR-584-5p, and miR-1247-5p 
were associated with both echocardiographic markers of cardiac remodeling and prevalent HF.
Relevance for Patients: miR-29c-3p, miR-584-5p, and miR-1247-5p were associated with 
echocardiographic phenotypes and prevalent HF and are potential biomarkers for adverse cardiac 
remodeling in HF.
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1. Introduction
Heart failure (HF) is a rapidly rising public health problem

that affects more than 37 million people worldwide with high 
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morbidity and mortality [1,2]. It is a systemic disease, in which 
structural, neurohumoral, cellular, and molecular mechanisms 
that maintain physiological functions become pathological [3,4]. 
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Together, these dysfunctional processes lead to increased cardiac 
remodeling, circulation redistribution, and volume overload [5]. 
Key to prevention and treatment of HF is the understanding 
of maladaptive cellular responses that lead to this disease. 
In particular, there is an urgent need to better understand the 
molecular mechanisms by which this pathological response is 
coordinated.

Small noncoding RNAs regulate signaling pathways that 
dictate physiological as well as pathological responses to 
stress. MicroRNAs (miRNAs) are small noncoding RNAs that 
modulate cardiac differentiation, proliferation, maturation, and 
pathological remodeling responses to environmental stimuli [6,7]. 
Extracellular RNAs (ex-RNAs) are endogenous small noncoding 
RNAs that exist in the plasma with remarkable stability and may 
reflect cellular states and cellular communication [8]. Although 
there are several reports implicating ex-RNAs in HF [9-11], the 
observations are biased due to the study of only a limited number 
of miRNAs. In a broader and unbiased screen of circulating ex-
RNAs, specific miRNAs were found to be expressed in the setting 
of HF; however, the expression of ex-RNAs in acute clinical 
settings remains unknown [12]. Data illustrating the expression 
of plasma ex-RNAs in the acute clinical setting could provide 
relevant ex-RNA biomarkers and shed light on the molecular 
mechanisms underlying clinical HF.

Transthoracic echocardiography is a useful noninvasive 
technique to assess cardiac function and for prognostication of 
HF [13]. Cardiac remodeling as measured by enlarged cardiac 
chamber size, lower left ventricular ejection fraction (LVEF) 
or higher LV mass (LV mass) is associated with the incidence 
of HF [14-16]. Furthermore, changes in echocardiographic 
phenotypes are associated with rapid progression of the 
disease [17]. The high utility of echocardiographic parameters 
in the evaluation and prognostication of HF is due to its ability 
to define structural processes underpinning pathological cardiac 
remodeling. Although echocardiographic phenotypes associated 
with HF are well known, the molecular basis for pathological 
cardiac remodeling is less understood.

To better understand the signaling pathways activated in HF, 
we examined ex-RNAs relevant to cardiac remodeling as well 
as clinical HF in a hospitalized patient population. We employed 
a two-step analysis model that leveraged echocardiographic 
phenotypes associated with cardiac remodeling and prevalent HF 
in acute coronary syndrome (ACS) survivors from the Transitions, 
Risks, and Action in Coronary Events Center for Outcomes 
Research and Education (TRACE-CORE) cohort. In this study, 
we applied a mechanism-based framework to identify promising 
candidate ex-RNAs in the acute clinical setting to shed light on the 
molecular processes that drive HF.

2. Materials and Methods

2.1 Study population

Details of the design, participant recruitment, interview 
processes, and medical record abstraction procedures used in 
TRACE-CORE study have previously been reported [18,19]. In 

brief, TRACE-CORE used a 6-site prospective cohort design to 
follow 2187 patients discharged after an ACS hospitalization from 
April 2011 to May 2013 (Figure 1). Sites in Central Massachusetts 
included two academic teaching hospitals and a large community 
hospital. The other sites included two hospitals affiliated with 
a managed care organization in Atlanta, GA, and an academic 
medical center. At the sites in Central Massachusetts, 411 blood 
samples were collected, processed as described previously, and 
plasma was stored in −80°C [8,20]. Of the plasma collected, 
296 were of sufficient quality for RNA extraction and qPCR 
experiment. The institutional review boards at each participating 
recruitment site approved this study. All participants provided 
written informed consent.

2.2 Ascertainment of HF

Trained study staff abstracted participants’ baseline 
demographic, clinical, laboratory, and electrocardiographic data 
and in-hospital clinical complications from available hospital 
medical records. Comorbidities present at the time of hospital 
admission were identified from each participant’s admission 
history and physical examination. Any patient with documentation 
of HF by a trained medical provider was considered as having 
prevalent HF.

2.3 ex-RNA selection and profiling

As part of a transcriptomic profiling study, we collected 
venous blood samples from 296 TRACE-CORE participants’ in-

TRACE -CORE Study 
N=2187

UMMC

N=991

Collected blood samples

N=441

MiRNA qPCR Experiments

N=296

MiRNA and TTE

N=143

Figure 1. Sample selection for the analyses from the Transitions, Risks, 
and Action in Coronary Events Center for Outcomes Research and 
Education study.
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hospital admission. The methods for processing blood samples, 
storing plasma samples, and RNA isolation have previously 
been described [20]. We have previously published methods for 

nucleolar RNAs (snoRNAs) [8]. ex-RNAs were selected a priori, 
based on previously generated data from the Framingham Heart 
Study [8
the High-Throughput Gene Expression and Biomarker Core 
Laboratory at the University of Massachusetts Medical School. 

q) where higher 
Cq

described in supplementary information (Supplementary Table 1).

2.4 Echocardiographic measurements

Complete two-dimensional (2D) echocardiograms were 
performed during hospitalization. Ejection fraction, 2D 
volumes, and linear dimensions were measured according to 
ASE guidelines [21
diastolic (LVED) volume, left atrial (LA) volume, and LA volume 
index (LAVI) (Table 1). In brief, Simpson’s biplane summation 
of disks method was used to make measurements in apical 
2-chamber and 4-chamber views. LV mass was calculated by LV
mass = 0.8 (1.04[LVID + PWTd + SWTd]3 – [LVID]3) + 0.6 g [22].

2.5 Statistical analysis

A two-step analysis model was used to leverage 
echocardiographic phenotypes to identify candidate ex-RNAs 

Step 1, we examined the relations between ex-RNAs with one 
or more echocardiographic phenotypes (Table 2, Supplementary 
Table 2). In Step 2, we examined the associations of ex-RNAs 

Table 3). Of note, 
the number of participants in each step differed as we did not 
have echocardiographic data available for all participants with 
plasma ex-RNA data. There are 143 cases with both ex-RNA and 
echocardiographic data in our TRACE-CORE cohort (Figure 1). 

RNAs, we queried for a relationship with prevalent HF on the full 
296 cases with ex-RNA data.

For Step 1 of our analyses, we used ordinary least-squares 
linear regression to quantify associations between ex-RNA 
levels and one or more echocardiographic phenotypes in all 
participants. To account for multiple testing, we employed 
Bonferroni correction to establish a more restrictive threshold 

discovery rate (via the Benjamini–Hochberg false discovery 
rate approach) to screen associations between ex-RNAs and 
one or more echocardiographic phenotypes. The α for achieving 

a priori. Note that, Cq 
represents a log measure of concentration, with exponentiation 
factor 2. In Step 2 of the analysis, we examined the associations of 

Table 1. Characteristics of TRACE-CORE participants included in the 
analytic sample.
Characteristics No heart 

failure (n=265)
Heart 

Failure (N=31)
P-value

Age, mean SD 63±11 68±13 <0.01
Female 34% 23% 0.19
Race (Caucasian) 96% 100% 0.32
Height (inches) 69±14 68±5 0.29
Weight (lbs) 187±46 191±57 0.66
Body mass index (kg/m2) 29±6 30±5 0.79

Social history

Education 

High school 38% 58%
Some college 28% 26% <0.01
College 34% 16%
Married 68% 52% 0.08

Risk factors

Hyperlipidemia 67% 77% 0.25
Myocardial infarction 25% 74% <0.001
Anginal pectoris/CHD 23% 67% <0.001
Type 2 diabetes mellitus 28% 32% 0.65
Stroke/TIA 2% 3% 0.64

7% 29% <0.001
Hypertension 68% 90% <0.01

Heart failure symptoms

Angina 71% 68% 0.74
Dyspnea 37% 52% 0.11

Seattle angina questionnaire

Physical limitation 83.9±21.6 64.7±28.2 <0.01
Angina stability 43.1±27.4 44.6±31.9 0.81
Angina frequency 75.4±23.7 68.3±22.8 0.12
Treatment satisfaction 94±11.5 91.7±9.9 0.30
Quality of life 64.8±25.9 56.3±27.5 0.09

Admission medications

Aspirin 45% 81% <0.001
Beta-blocker 38% 87% <0.001
ACEI or ARB 36% 71% <0.001
Statin 56% 84% <0.01
Plavix 12% 26% 0.06
Coumadin 4% 26% <0.001

Physical activity

No physical activity 59% 77%
<150 min/week 16% 13% 0.08
>150 min/week 25% 10%

Acute coronary syndrome category
ST-elevation myocardial 
infarction

28% 10% <0.05

Physiological factors

Heart rate (beats per 
minute)

79±21 84±25 0.17

Systolic blood 
pressure (mmHg)

141±24 129±29 <0.01

(Contd...)
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regression model. Here, we used continuous Cq values to compare 
with prevalent HF (Table 3).

Differentially expressed miRNAs were analyzed using 
miRDB, an online database that captures miRNA and gene target 
interactions [23,24]. We acknowledge our use of the gene set 
enrichment analysis software, and molecular signature database 
(MSigDB) for gene ontology (GO) analysis [25]. The network 
and functional analyses were generated through the use Qiagen’s 
Ingenuity Pathway Analysis (IPA) [26]. All statistics were 
performed with SAS software version 9.3 (SAS Institute) with a 
2-tailed P<0.05 as significant.

3. Results

3.1 Patient characteristics

The baseline demographic, clinical, and echocardiographic 
characteristics of the 296 study participants are outlined in Table 1. 
Study participants were middle-aged to older adults (mean age of 
63±11 and 68±13 for the no HF [control group] vs. the HF group, 
respectively). There was a male predominance; women represented 
34% and 23% of control and HF groups, respectively. The patients 
with HF had a significant higher history of myocardial infarction, 
coronary heart disease, hypertension, and atrial fibrillation 
(Table 1). The HF group was more likely to have experienced 
STEMI as compared with NSTEMI. Furthermore, QRS intervals 
tended to be longer in the group with HF. Patients with HF had 

Diastolic blood 
pressure (mmHg)

80±17 70±14 <0.01

Respiratory rate 
(breaths per minute)

18±4 19±3 0.51

Electrocardiogram

QRS duration 95±18 120±34 <0.01
PR interval 164±30 182±25 <0.01

Lab values

Troponin peak 25.8±36.7 6.0±17.1 <0.001
Total cholesterol 175.4±46.1 130.1±36.2 <0.01
Brain natriuretic peptide 581.8±846.3 758.7±665.9 0.55
Creatinine 1.1±0.4 1.8±1.0 <0.01
Hemoglobin 11.7±2.2 10.8±2.2 <0.05
Sodium 136±3 135±4 0.32

Echocardiographic phenotype*

LV ejection fraction 53.7±13.0 45.0±8.8 0.07
LV mass 180.0±58.1 230.3±77.0 <0.05
LAVI=LAVavg/BSA 23.0±8.9 32.0±9.0 <0.01
LA volume 45.7±19.3 64.2±24.8 <0.01
LV end diastolic volume 83.5±38.3 132±51.4 <0.01

CHD: Coronary heart disease, TIA: Transient ischemic attack, ACEi: Angiotensin-converting 
enzyme inhibitors, ARB: Angiotensin II receptor blockers, LV: Left ventricle, 
LA: Left atrium, LAVI: Left atrial volume index, LAVavg/BSA: Average left atrial 
volume/body surface area. *Echocardiographic phenotypes were characterized in a subset 
of patients (n=143) where TTE were available, TRACE-CORE: Transitions, Risks, and 
Actions in Coronary Events Center for Outcomes Research and Education

Table 1. (Continued)

Table 2. ex-RNAs associated with echocardiographic phenotypes.
ex‑RNA No heart failure Heart failure

n Mean (1/Cq) Median (1/Cq) Std. Dev N Mean (1/Cq) Median (1/Cq) Standard deviation

hsa_miR_10a_5p 73 0.0526 0.0490 0.0216 10 0.0623 0.0484 0.0449
hsa_miR_10b_5p 111 0.0529 0.0519 0.0064 13 0.0531 0.0539 0.0036
hsa_miR_1246 263 0.0699 0.0689 0.0079 31 0.0695 0.0691 0.0053
hsa_miR_1247_5p 198 0.0533 0.0513 0.0146 25 0.0500 0.0496 0.0022
hsa_miR_1271_5p 8 0.0894 0.0522 0.0707 1 0.0458 0.0458 .
hsa_miR_142_5p 153 0.0548 0.0540 0.0129 15 0.0541 0.0517 0.0105
hsa_miR_144_5p 93 0.0538 0.0500 0.0340 9 0.0493 0.0495 0.0014
hsa_miR_148b_3p 192 0.0540 0.0537 0.0045 24 0.0528 0.0518 0.0039
hsa_miR_152_3p 118 0.0544 0.0528 0.0153 12 0.0546 0.0555 0.0038
hsa_miR_17_3p 39 0.0570 0.0484 0.0458 3 0.0484 0.0472 0.0028
hsa_miR_185_3p 12 0.0808 0.0470 0.0785 1 0.0457 0.0457 .
hsa_miR_186_5p 108 0.0495 0.0493 0.0027 14 0.0495 0.0494 0.0024
hsa_miR_190a_3p 30 0.0548 0.0482 0.0259 0 . . .
hsa_miR_200b_3p 40 0.0543 0.0476 0.0258 4 0.0716 0.0636 0.0297
hsa_miR_210_3p 65 0.0484 0.0481 0.0021 4 0.0471 0.0470 0.0011
hsa_miR_2110 63 0.0493 0.0483 0.0072 9 0.0487 0.0480 0.0024
hsa_miR_212_3p 18 0.0596 0.0464 0.0517 2 0.0465 0.0465 0.0011
hsa_miR_224_5p 90 0.0491 0.0484 0.0030 8 0.0492 0.0495 0.0026
hsa_miR_29b_3p 106 0.0511 0.0492 0.0148 5 0.0486 0.0487 0.0019
hsa_miR_29c_3p 157 0.0517 0.0512 0.0035 15 0.0497 0.0489 0.0035
hsa_miR_29c_5p 262 0.0589 0.0612 0.0057 31 0.0570 0.0545 0.0064
hsa_miR_337_3p 54 0.0540 0.0493 0.0212 1 0.0540 0.0540 .

(Contd...)
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hsa_miR_342_5p 25 0.0479 0.0474 0.0025 4 0.0860 0.0460 0.0802
hsa_miR_34a_3p 44 0.0481 0.0477 0.0038 5 0.0481 0.0473 0.0018
hsa_miR_424_3p 15 0.0618 0.0481 0.0539 1 0.0480 0.0480 .
hsa_miR_425_5p 67 0.0511 0.0494 0.0086 7 0.0541 0.0484 0.0117
hsa_miR_4446_3p 253 0.0577 0.0605 0.0067 29 0.0554 0.0523 0.0065
hsa_miR_450b_5p 36 0.0630 0.0482 0.0414 5 0.0501 0.0504 0.0042
hsa_miR_454_3p 51 0.0601 0.0487 0.0342 3 0.0494 0.0479 0.0031
hsa_miR_4770 34 0.0730 0.0495 0.0497 4 0.0475 0.0469 0.0023
hsa_miR_494_3p 26 0.0571 0.0476 0.0323 2 0.0598 0.0598 0.0146
hsa_miR_497_5p 62 0.0509 0.0491 0.0085 7 0.0494 0.0490 0.0031
hsa_miR_532_5p 39 0.0591 0.0477 0.0377 2 0.0801 0.0801 0.0440
hsa_miR_545_5p 12 0.0850 0.0497 0.0636 0 . . .
hsa_miR_548d_3p 32 0.0475 0.0472 0.0014 2 0.0481 0.0481 0.0009
hsa_miR_584_5p 159 0.0537 0.0510 0.0284 22 0.0492 0.0487 0.0024
hsa_miR_590_3p 20 0.0503 0.0486 0.0058 0 . . .
hsa_miR_596 13 0.0480 0.0480 0.0014 1 0.0474 0.0474 .
hsa_miR_642a_5p 16 0.1061 0.0972 0.0882 1 0.0479 0.0479 .
hsa_miR_656_3p 203 0.0587 0.0613 0.0078 22 0.0558 0.0547 0.0088
hsa_miR_6803_3p 41 0.0493 0.0483 0.0076 5 0.0990 0.0467 0.1154
hsa_miR_877_3p 71 0.0523 0.0504 0.0135 10 0.0562 0.0518 0.0159
hsa_miR_885_5p 67 0.0526 0.0486 0.0187 8 0.0641 0.0480 0.0350
hsa_miR_9_3p 78 0.0510 0.0498 0.0054 8 0.0558 0.0518 0.0137

Table 2. (Continued)
ex‑RNA No heart failure Heart failure

n Mean (1/Cq) Median (1/Cq) Std. Dev N Mean (1/Cq) Median (1/Cq) Standard deviation

Table 3. miRNAs significantly related to prevalent HF.
miRNA n Mean Std Estimate Standard 

error
Prob 

Chi‑square
Odds 
ratio

Lower 
CL

Upper 
CL

Raw 
P value

FDR 
P value

hsa_miR_1247_5p 223 19.3333 1.87668 0.4849 0.209 0.0203 1.624 1.078 2.446 0.0203 0.0485

hsa_miR_125b_5p 126 20.0642 1.00202 1.0689 0.4716 0.0234 2.912 1.156 7.34 0.0234 0.0485
hsa_miR_17_5p 207 19.2059 1.49941 0.3744 0.1849 0.0429 1.454 1.012 2.089 0.0429 0.0485
hsa_miR_181a_3p 216 19.0163 1.53413 0.587 0.2012 0.0035 1.799 1.212 2.668 0.0035 0.0185
hsa_miR_197_3p 237 19.8007 1.09519 0.454 0.2105 0.031 1.575 1.042 2.379 0.031 0.0485
hsa_miR_1_3p 92 19.8936 2.46961 1.3026 0.6502 0.0451 3.679 1.029 13.158 0.0451 0.0485
hsa_miR_200c_3p 31 20.0822 3.42561 -1.0268 0.4689 0.0285 0.358 0.143 0.898 0.0285 0.0485
hsa_miR_222_3p 221 18.9489 1.42712 0.3672 0.1803 0.0417 1.444 1.014 2.056 0.0417 0.0485
hsa_miR_26a_5p 261 17.5297 1.77419 0.3637 0.118 0.002 1.439 1.142 1.813 0.002 0.0185
hsa_miR_26b_5p 275 17.6456 1.65162 0.376 0.1272 0.0031 1.457 1.135 1.869 0.0031 0.0185
hsa_miR_27b_3p 226 19.1171 1.4456 0.351 0.1738 0.0434 1.421 1.01 1.997 0.0434 0.0485
hsa_miR_29c_3p 172 19.4854 1.28407 0.5425 0.2457 0.0272 1.72 1.063 2.784 0.0272 0.0485
hsa_miR_30a_5p 254 18.461 1.51398 0.3463 0.1443 0.0164 1.414 1.066 1.876 0.0164 0.0485
hsa_miR_30e_3p 143 19.6694 1.9183 -0.4287 0.2019 0.0337 0.651 0.439 0.967 0.0337 0.0485
hsa_miR_30e_5p 217 18.8058 1.45978 0.3254 0.1636 0.0467 1.385 1.005 1.908 0.0467 0.0485
hsa_miR_3613_3p 243 18.4669 1.6719 0.4435 0.1415 0.0017 1.558 1.181 2.056 0.0017 0.0185
hsa_miR_382_3p 96 20.389 1.12669 2.3048 1.168 0.0485 10.022 1.016 98.898 0.0485 0.0485
hsa_miR_495_3p 115 19.7469 1.49644 0.7446 0.3642 0.0409 2.106 1.031 4.299 0.0409 0.0485
hsa_miR_574_3p 108 20.0059 1.99826 1.103 0.5517 0.0456 3.013 1.022 8.884 0.0456 0.0485
hsa_miR_584_5p 181 19.6137 2.00572 0.4672 0.2098 0.026 1.595 1.058 2.407 0.026 0.0485
hsa_miR_7_5p 116 20.0465 1.01701 0.793 0.3373 0.0187 2.21 1.141 4.281 0.0187 0.048
Bolded are those significantly associated with echocardiographic phenotypes
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lower LEVF and displayed a concordant trend of higher LV mass, 
LVED volume, LA volume, and LAVI. The mean LV mass in a 
patient with HF was 230±8.9 gm as compared to180±58.1 g those 
without prevalent HF (Table 1).

3.2 Association of ex-RNAs with echocardiographic phenotypes

A total of 374 ex-RNAs (331 miRNAs and 43 snoRNAs) were 
quantified in the plasma of TRACE-CORE participants included 
in our investigation. There were 44 ex-RNAs that associated with 
one or more echocardiographic parameters, independent of other 
clinical variables (Table 2). Three miRNAs that were associated 
with three or more echocardiographic traits, miR-190a-3p, miR-
885-5p, and miR-596 (Supplementary Table 2).

3.3 Associations of ex-RNAs with prevalent HF

ex-RNAs associated with echocardiographic phenotypes 
(n=44 miRNAs) were investigated for their relationships with 
prevalent HF using logistic regression models. Three were 
significantly associated with prevalent HF, miR-29c-3p, miR-584-5p, 
and miR-1247-5p, all of which were inversely correlated. In general, 
lower ex-RNAs levels correlated with higher odds of having prevalent 
HF (Table 2). However, this is not consistent across all identified ex-
RNAs. We found 21 ex-RNAs that associated with prevalent HF 
through unadjusted logistic regression modeling (Table 3).

3.4 Gene Targets of ex-RNAs associated with prevalent HF

We investigated predicted targets of the three miRNAs 
associated with echocardiographic phenotypes and prevalent HF 
through miRDB. From this, 839 genes were predicted as targets 

for at least one miRNA. As miRNA are known to act in concert, 
we used the combined targets of miR-29c-3p, miR-584-5p, and 
miR-1247-5p to perform further analysis [6]. IPA was utilized to 
identify the molecular network and cellular toxicity pathways 
regulated by predicted targets. Overlapping canonical pathways 
were mapped to allow for visualization of the shared biological 
pathways through the common genes (Figure 2). The nodes 
identified included p53 signaling, transforming growth factor β 
(TGFβ) signaling, role of macrophages, fibroblasts and 
endothelial cells in rheumatoid arthritis, IL6 signaling, role of 
osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis, 
role of NFAT in regulation of the immune response, and mouse 
embryonic stem cell pluripotency (Figure 2, Supplementary 
Table 3). Highlighted in Figure 2 are pathways that were 
implicated in inflammation, fibrosis, and cell death; the complete 
list in the show in Supplementary Table 3. IPA identified 
predicted targets that are known to be involved in cellular 
toxicity based on previous reports. Table 4 lists the predicted 
targets as well as the cellular toxicity pathway, for example, cell 
death, cardiac fibrosis, p53, and TGFβ signaling. Notably, 
DICER1, TGFB2, HDAC1, THBS4, THBS2, and PPARC1A were 
among the targets identified. Gene ontology (GO) terms 
enrichment analysis using the MSigDB showed that miRNAs 
associated with echocardiographic phenotype and prevalent HF 
have strong associations with genes involved in the extracellular 
matrix, biological adhesion, and tissue development and cellular 
differentiation (Figure 3). We searched the literature for work 
exploring functions of miR-29c-3p, miR-584-5p, and 
miR-1247-5p (Supplementary Table 4). Dysregulation of 
miR-29c-3p has been implicated in cardiac development and cardiac 

Figure 2. A network analysis of predicted targets of miR-29-3p, miR-584-5p, and miR-1247-5p as performed by ingenuity pathway analysis (IPA). 
Nodes represent signaling pathways, and lines are protein targets that are common between nodes. Nodes labeled with pathways are previously 
associated with inflammation, cardiac necrosis, and fibrosis. p53 and TGF-β signaling pathways are highlighted in red as they are pathways consistent 
with GO term analysis. Full list of top 20 predicted pathway by IPA is available in Supplementary Table 3.
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fibrosis. miR-584-5p and miR-1247-5p have been implicated in 
the regulation of cellular proliferation and apoptosis in several 
malignancies (Supplementary Table 4).

4. Discussion

In our investigation of ex-RNA profiles of 296 hospitalized ACS
survivors in the TRACE-CORE Cohort, we identified 44 plasma 
ex-RNAs associated with one or more echocardiographic traits. 
Furthermore, three of these ex-RNAs, miR-29c-3p, miR-584-5p, 
and miR-1247-5p were associated with prevalent HF. While the 
association of miRNA and HF has been explored previously, our 
study uniquely examined the association between ex-RNA and 
HF in the acute clinical setting. We identified miR-29c-3p, miR-
584-5p, and miR-1247-5p as regulators in cardiac remodeling
and HF in patients hospitalized for ACS. Although miR-29 is a
known to be downregulated in acute myocardial infarction and is
a modulator of cardiac fibrosis [27], this is the 1st time miR-584-
5p and miR-1247-5p have been implicated as having a role in HF.

4.1 Echocardiographic phenotypes and cardiac remodeling 
in HF

Lower LVEF and concurrent higher in LV mass, LVED 
volume, LA volume, and LAVI reflect adverse cardiac 
remodeling [13,28,29]. Echocardiographic measures of 
cardiac remodeling have been shown to correlate with cellular 
hypertrophy as well as extracellular collagen deposition, metabolic 
dysregulation, and myocyte cell death [30]. Furthermore, changes 
in these characteristics prognosticate HF disease progression 
with unrivaled accuracy. Although HF involves several important 
pathological processes, we focused on cardiac remodeling as it 
is key in the evolution of HF. Here, we employed a mechanism-
based approach to analyze the plasma miRome to tease out the 
complex components that contribute to cardiac remodeling in HF.

4.2 Association of ex-RNAs, cardiac remodeling, and HF

The association of ex-RNAs with structural remodeling has 
been explored recently [12]. However, few prior studies have 

examined quantitative echocardiographic phenotypes in humans 
in relation to plasma miRNA expression in the acute clinical 
setting. Consistent with previous data, our results revealed that 
miR-29c-3p is associated with cardiac remodeling [27]. We 
identified 44 ex-RNAs with statistically significant associations 
with the pre-specified echocardiographic HF endophenotypes, 
three of which were also associated with prevalent HF. Functional 
analysis of downstream targets supports existing evidence that HF 
is coordinated through several signaling pathways, most notably 
p53 and TFG-β signaling.

Cardiomyocyte cell death leads to cardiac dysfunction. 
Consistent with previous reports, we find that p53 signaling 
pathway is associated with prevalent HF [31]. p53 is a major 
inducer of apoptosis [32,33] which is upregulated in ventricular 
cardiomyocytes of patients with HF [31,34]. Promotion of p53 
degradation prevents myocardial apoptosis [35]. We speculate 
that miR-29c-3p, miR-584-5p, and miR-1247-5p targets such as 
CDK2 and HDAC1 to regulate p53 signaling and that decrease of 
these regulators results in upregulation on p53, which leads to an 
increase in apoptosis [36-38].

One of the targets implicated in cardiac apoptosis is DICER1, 
a gene encoding a RNase III endonuclease essential for miRNA 
processing [39]. Chen et al. found that DICER is deceased in a 
patient with end-stage dilated cardiomyopathy HF requiring 
LV assist device (LVAD) compared to patients without 
HF [40]. Remarkably, DICER expression is increased post-LVAD 
transplantation, correlating with improved cardiac function. 
Furthermore, they found that cardiac-specific Dicer knockout in a 
mouse model leads to rapid progressive dilated cardiomyopathy, 
HF, and postnatal lethality [40]. Dicer mutant mice show aberrant 
expression of cardiac contractile proteins and profound sarcomere 
disarray. Existing literature supports our identification of DICER1, 
a predicted target of miRNA identified, as critical for cardiac 
structure and function.

Our analysis suggests that TGF-β plays an integral part in 
adult patients with HF. Cardiac cell death subsequently leads to 
tissue fibrosis, which is in part coordinated through the TGF-β 
signalizing pathway [41,42]. TGF-β2 is a predicted target of 

Figure 3. Gene ontology (GO) term analysis of predicted targets of miR-29-3p, miR-584-5p, and miR-1247-5p as performed by gene set enrichment 
analysis molecular signature database. Labeled in red is GO terms associated with p53 and transforming growth factor-β pathways and in blue are 
otherwise.



Distributed under creative commons license 4.0 DOI: http://dx.doi.org/10.18053/jctres.05.201901.003 

identified miRNAs along with other genes (Table 4). TGF-β has 
been shown to downregulate the miR-29 family, which, in turn, 
regulate expression of collagen Type I, alpha 1 and 2 and collagen 
Type III, alpha 1, all of which are involved in extracellular 
matrix production in the heart [27]. In addition, TGF-β1 has been 
shown to induce endothelial cells to undergo an endothelial-to-
mesenchymal transition to contribute to cardiac fibrosis [43]. Serum 
TGF-β levels increase significantly in patients with hypertrophic 
cardiomyopathy [44]. Furthermore, myocardial TGF-β synthesis is 
consistently upregulated in animal models of HF [45,46].

GO categories analysis supported the hypothesis that 
miR-29c-3p, miR-584-5p, and miR-1247-5p have regulatory 
roles in cardiac remodeling through TGF-β. The top five 
GO categories are a proteinaceous extracellular matrix 
(GO:0005578), biological adhesion (GO:0022610), enzyme 
binding (GO:0031012), regulation of transcription from RNA 
polymerase promoter (GO:0006357), and tissue development 
(GO:0009888). Notably, there is a recurring theme of the GO 
term enrichment in extracellular matrix remodeling and cell 
differentiation, both of which has been shown to be regulated by 
TFG-β [47,48]. Together, our data support that miR-29c-3p, miR-
584-5p, and miR-1247-5p affect cardiac remodeling structurally

by influencing cell death and fibrosis, in part through the p53 and 
TFG-β signaling pathways.

Previously, we identified that miR-106b-5p, miR-17-5p, and miR-
20a-5p 3 were associated with a reduction in long-term incident HF [12]. 
In our current analysis, we found that miR-17-5p was independently 
associated with prevalent HF. Wong et al. have examined the plasma 
miRome in patients with HF, HF with preserved ejection fraction 
(HFPEF), and HF with reduced ejection fraction (HFREF) and identified 
miRNAs associated with the clinical phenotypes [49]. We do not find 
an overlap between our ex-RNAs and those previously identified to 
be associated with HF. This could be due to the fact that the Singapore 
HF Outcomes and Phenotype (SHOP) cohort was a different racial 
and geographical cohort. Importantly, patients from the SHOP cohort 
were recruited from the ambulatory setting, whereas our TRACE-
CORE cohort focused on patients in the hospitalized setting. Mick et al. 
examined ex-RNA associated with stroke or coronary heart disease [50]. 
There is no overlap in the ex-RNA identified to be associated with stroke, 
perhaps highlighting key differences between ACS and stroke.

4.3 Strength and limitations

Our study has several strengths. We examined ex-RNA 
associations with echocardiographic traits and HF in a well-

40 Tran et al. | Journal of Clinical and Translational Research 2019; 5(1): 33-43 

Table 4. Cellular toxicity pathways implicated by predicted targets of miR 29c-3p, miR 584-5p, and miR 1247-5p.
Ingenuity toxicity pathway ‑log (P‑value) Ratio Gene

Cardiac necrosis/cell death 3.75 0.068 FNG, THBS4, LEP, LIF, PPIF, UBE4B, TNFAIP3, MDM2, KRAS, DICER1, THBD, THBS2, 
PRKAA1, WISP1, NAMPT, GSK3B, CDK2, MCL1, CALCA, PPARGC1A

p53 signaling 3.61 0.0982 AKT2, TP53INP1, CCND2, TP63, GAB1, PIK3CG, PIK3R1, HDAC1, MDM2, GSK3B, CDK2
Renal necrosis/cell death 3.23 0.0527 PTHLH, EMP2, NF2, TNFAIP3, KRAS, PKN2, NFAT5, PRKAA1, NAMPT, PPM1A, AMER1, 

GNA13, GSK3B, CALB1, ZNF512B, MCL1, TRAF1, ITGB1, IFNG, TP53INP1, FOS, PEX5, 
GLIS2, CDC42, TMX1, CALCR, CDK2, CALCA, BIRC2

TGF-β signaling 2.91 0.0938 RAP2A, FOS, RUNX2, CDC42, BMPR1A, HDAC1, TGFB2, KRAS, TAB1
TR/RXR activation 2.85 0.0918 AKT2, GAB1, COL6A3, PIK3CG, PIK3R1, MDM2, G6PC, PPARGC1A, NCOA4
Anti-apoptosis 2.79 0.156 HDAC1, TMX1, TNFAIP3, MCL1, BIRC2
Hepatic fibrosis 2.64 0.0857 IFNG, LEP, COL6A3, COL4A3, THBS2, TGFB2, PDGFB, AHR, NID1
Cell cycle: G1/S checkpoint regulation 2.57 0.101 CCND2, HDAC1, CDK6, TGFB2, MDM2, GSK3B, CDK2
Cardiac fibrosis 2.2 0.0605 PTX3, ITGB1, IFNG, TRDN, TNFAIP3, CACNA1C, DICER1, NF1, BMPR1A, THBS2, GSK3B, 

DAG1, AHR
VDR/RXR activation 1.71 0.0769 IFNG, RUNX2, MXD1, TGFB2, CALB1, THBD
Liver necrosis/cell death 1.63 0.0484 IFNG, LIF, PIK3R1, DICER1, PDGFB, NPC1, FOS, NF1, PIK3CG, G6PC, GSK3B, AHR, 

PPARGC1A, BIRC2, MCL1
Increases renal nephritis 1.63 0.0833 IFNG, LEP, LIF, TRAF3IP2, COL4A3
Liver proliferation 1.49 0.05 ITGB1, IFNG, FOS, LEP, NFATC3, PIK3R1, HDAC1, PRKAA1, DICER1, GSK3B, CDK2, AHR
Primary glomerulonephritis biomarker 
panel (human)

1.46 0.182 SAMD4A, MCL1

NF-κB signaling 1.39 0.0469 RAP2A, IL36G, AKT2, TRAF3, GAB1, BMPR1A, PIK3CG, PIK3R1, HDAC1, TNFAIP3, KRAS, 
GSK3B, TAB1

Mechanism of gene regulation by 
peroxisome proliferators via PPARα

1.34 0.0632 FOS, PIK3R1, KRAS, PDGFB, TAB1, PPARGC1A

Increases cardiac proliferation 1.33 0.08 LEP, BMPR1A, WISP1, DICER1
Increases renal proliferation 1.3 0.0541 ITGB1, PTHLH, YBX3, WISP1, RNF144B, PTP4A1, PDGFB, CDK2
Decreases depolarization of 
mitochondria and mitochondrial 
membrane

1.25 0.0938 CSTB, MCL1, PPARGC1A

TGF-β: Transforming growth factor-β



Tran et al. | Journal of Clinical and Translational Research 2019; 5(1): 33-43 41

Distributed under creative commons license 4.0 DOI: http://dx.doi.org/10.18053/jctres.05.201901.003 

characterized cohort study. TRACE-CORE is a cohort hospitalized 
ACS survivors, which uniquely provided the expression profiles 
of plasma ex-RNA in the acute clinical setting. In this study, 
our observations may reflect biomarker changes secondary to 
ACS rather than HF. However, we did not find any significant 
differences in ex-RNA due to AMI in our previous work [50]. As 
we used the same methodology to study ex-RNA in this study, 
the differential expression of ex-RNA observed is more likely 
secondary to HF status rather than ACS.

Our study has several shortcomings, among which is its relatively 
small sample size that is not racially or geographically diverse. 
We lack the power to examine whether these three miRNAs were 
associated with HF subtypes, HFPEF, or HFREF. Although we find 
that these miRs are associated with echophenotypes and HF, we 
have not located the sources or understand the mechanism by which 
they are transported in the blood. Further experiments at the bench 
are needed to explore these key questions to improve understanding 
of the molecular processes by which these miRs regulate HF.

5. Conclusions

In our analysis of echocardiographic, clinical, and ex-RNAs
data from ACS survivors enrolled in the TRACE-CORE cohort, 
we observed that three ex-RNAs, miR-29c-3p, miR-584-5p, and 
miR-1247-5p were associated with echocardiographic phenotypes 
and prevalent HF. These ex-RNAs were predicted to mediate 
cardiac remodeling in part through the p53 and TFG-β signaling 
pathways. Further studies with a diverse cohort as well as basic 
experimentation are needed to validate our results. Our work 
establishes a mechanism-based framework for the identification of 
novel ex-RNAs biomarkers and downstream targets to attenuate 
cardiac remodeling that lead to HF.
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